M1. (a) NaCl is ionic
cubic lattice
ions placed correctly
electrostatic attraction between ions
Covalent bonds between atoms in water
Hydrogen bonding between water molecules
Tetrahedral representation showing two covalent and two hydrogen bondsand two hydrogen bonds
2 hydrogen bonds per molecule
Attraction between ions in sodium chloride is very strong
Covalent bonds in ice are very strong
Hydrogen bonds between water molecules in ice are much weaker
Consequently, less energy is required to break the hydrogen bonds in ice to form separate water molecules than to break the ionic bonds in sodium chloride and make separate ions
(b)

Mark	The marking scheme for this part of the question includes an overall assessment for the Quality of Written Communication (QWC). There are no discrete marks for the assessment of QWC but the candidates' QWC in this answer will be one of the criteria used to assign a level and award the marks for this part of the question Descriptor
an answer will be expected to meet most of the criteria in the level	
descriptor	

4 bonding electron pairs and one lone pair repel as far apart as possible QWC lone pair - bond pair repulsion >bp—bp QWCpushes S-F bonds closer togethershape is trigonal bipyramidal with lone pair eitheraxial or equatorial QWC
angles <90
and <120

M2. (i)

(1)

(-)
$\mathrm{BF}_{3} \quad$ Trigonal planar/planar triangular [Not plane triangle]
$\mathrm{BF}^{-} \quad$ Tetrahedral[Not distorted tetrahedral]
Equal repulsion between (4) bonding pairs/bonds/bonding electrons
(ii) Lone pair donated / both electrons supplied by one atom
from F^{-}(to B)
[ignore missing charge or fluorine or 'atom']
dative/dative covalent/coordinate bonding (a) (i) $2 \mathrm{Na}+2 \mathrm{NH}_{3} \rightarrow 2 \mathrm{NaNH}_{2}+\mathrm{H}_{2}$ (or multiples)
(ii) (Missing 'H’ penalise once only) [NOT dot-and-cross diagrams]

[NOT $90^{\circ} / 180^{\circ}$ angles] (need $2 \mathrm{lp} \&$ 'bent' shape)

1
[9]

M3.

Page 4

(iii) $\underline{107^{\circ}}$
(iv) More lone pairs on NH_{2}^{-}, than on NH_{3}

Lone pairs repel more than bonding pairs
Must be comparison
(Mark separately)
[NOT repulsion between atoms or between bonds]
(b) (i) Simplest ratio of atoms of each element in a compound / substance / species / entity / molecule

	Mg	N	O
$\frac{16.2}{(24)}$	$\frac{16.2}{24.3}$	$\frac{18.9}{14}$	$\frac{64.9}{16}$

(Mark M1 first. If any wrong $A_{\text {, }}$ used $=C E=0$) (Accept $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$ for M3 if above working shown)

M4.B

M5. (a) dative / coordinate (covalent) bond;
(b)
PH_{3} PH_{4}^{+}

(1)

(1)
pyramidal OR trigonal pyramid $109\left({ }^{1 / 2}\right)^{\circ}$;
(accept tetrahedral)

M6.A

M7. (penalty for sig fig error =1 mark per question)
(a) neutron: relative mass $=1$ relative charge $=0$
(not 'neutral')
electron: \quad relative mass $=1 / 1800 \rightarrow 0$ /negligible or
$5.56 \times 10-4 \rightarrow 0$ relative charge $=-1$
(b) ${ }^{17} \mathrm{O} / \mathrm{O}^{17}$ mass number (Do not accept 17.0)
oxygen symbol ' O '
(if 'oxygen' + - 'mass number = 17'(1))
(if 'oxygen'+ - 'mass number = 17'(0))
(if at N° given but $\neq 8$, treat as 'con' for M2)
(if Ip on Be , diagram $=0$)
(ignore bond angles)
(not dot and cross diagrams)

1
(c)

bent / V-shaped / angular (1)
QoL Linear (1)
(mark name and shape independently)
(accept (distorted) tetrahedral)
(if balls instead of symbols, lose M1 - can award M2)
(penalise missing 'Cl' once only)
(not 'non-linear')
(d) $\quad M_{\mathrm{r}}\left(\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}=58(.3)\right.$ (if At N^{o} used, lose $M 1$ and $M 2$)
moles $\mathrm{Mg}(\mathrm{OH})_{2}=0.0172$ (conseq on wrong M2) (answer to $\underline{3+\text { s.f. }}$)
moles $\mathrm{HCl}=2 \times 0.0172=0.0344$ or $0.0343(\mathrm{~mol})($ process mark $)$

