M1.	(a)	NaCl is ionic
	cubic lattice	
	ions	placed correctly
	elec	trostatic attraction between ions
	Cov	alent bonds between atoms in water
	Hyd	rogen bonding between water molecules
		ahedral representation showing two covalent two hydrogen bonds
	2 hy	drogen bonds per molecule
	Attra	action between ions in sodium chloride is very strong
	Cov	alent bonds in ice are very strong

Hydrogen bonds between water molecules in ice are much weaker

1

1

1

1

1

1

1

1

1

1

1

1

Consequently, less energy is required to break the hydrogen bonds in ice to form separate water molecules than to break the ionic bonds in sodium chloride and make separate ions

(b)	
Mark Range	The marking scheme for this part of the question includes an overall assessment for the Quality of Written Communication (QWC). There are no discrete marks for the assessment of QWC but the candidates' QWC in this answer will be one of the criteria used to assign a level and award the marks for this part of the question
	Descriptor an answer will be expected to meet most of the criteria in the level descriptor
3	 claims supported by an appropriate range of evidence
	 good use of information or ideas about chemistry, going beyond those given in the question
	 argument well structured with minimal repetition or irrelevant points
	 accurate and clear expression of ideas with only minor errors of grammar, punctuation and spelling
2	 claims partially supported by evidence

	 good use of information or ideas about chemistry given in the question but limited beyond this
	 the argument shows some attempt at structure
	 the ideas are expressed with reasonable clarity but with a few errors of grammar, punctuation and spelling
0-1	 valid points but not clearly linked to an argument structure
	 limited use of information or ideas about chemistry
	– unstructured
	 errors in spelling, punctuation and grammar or lack of fluency

4 bonding electron pairs	
and one lone pair	1
	1
repel as far apart as possible QWC	1
lone pair - bond pair repulsion > bp—bp QWC	1
pushes S-F bonds closer together	1
shape is trigonal bipyramidal with lone pair either axial or equatorial QWC	1
angles <90	1
and < 120	1
	1

[20]

BF₃	BF ₃ Trigonal planar/planar triangular <i>[Not plane triangle]</i>		
BF₫	Tetrahedral [Not distorted tetrahedral]	1	
Equal repulsion between (4) <u>bonding</u> pairs/bonds/bonding electrons			
109(½)°		1	
Lone pair donated / both electrons supplied by <u>one atom</u>			
from F⁻ (to B) [ignore missing charge or fluorine or 'atom']	1	
dative/da	ative covalent/coordinate bonding	1	

[9]

1

M3. (a) (i) $2Na + 2NH_3 \rightarrow 2NaNH_2 + H_2$ (or multiples)

(ii)

- (iii) <u>107°</u>
- (iv) More lone pairs on NH_2^- , than on NH_3

Lone pairs repel more than bonding pairs
Must be comparison
(Mark separately)
[NOT repulsion between atoms or between bonds]

(b) (i) <u>Simplest ratio of atoms of each element</u> in a compound / substance / species / entity / molecule

(ii)		Mg	Ν	0		
	<u>16.2</u> (24)	<u>16.2</u> 24.3	<u>18.9</u> 14	<u>64.9</u> 16		
	(0.675)	0.667	1.37	4.06		
		1	2	6	MgN_2O_6	
(Mark M1 first. If any wrong A, used = CE = 0)						

(Accept Mg(NO₃)₂ for M3 if above working shown)

[9]

[1]

M4.B

M5. (a) dative / coordinate (covalent) bond;

1

1

1

1

1

(b) PH_3 PH_4^* $H \xrightarrow{P}_H$ $\left[\begin{array}{c} H \\ H \\ H \end{array} \right]^+$ (1) (1)

> pyramidal *OR* trigonal pyramid 109(^{1/2})°; (accept tetrahedral)

> > [7]

[1]

4

M6.A

M7. (penalty for sig fig error =1 mark per question) (a) neutron: relative mass = 1 relative charge = 0 (not 'neutral') 1 electron: relative mass = $1/1800 \rightarrow 0$ /negligible or $5.56 \times 10-4 \rightarrow 0$ relative charge = -1

1

oxygen symbol 'O'

(if 'oxygen' + — 'mass number = 17'(1)) (if 'oxygen' + — 'mass number = 17'(0)) (if at N° given but $\neq 8$, treat as 'con' for M2) (if lp on Be, diagram = 0) (ignore bond angles) (not dot and cross diagrams)

(c)

[12]